首页> 外文OA文献 >ImageCL: An Image Processing Language for Performance Portability on Heterogeneous Systems
【2h】

ImageCL: An Image Processing Language for Performance Portability on Heterogeneous Systems

机译:ImageCL:一种性能可移植性的图像处理语言   异构系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern computer systems typically conbine multicore CPUs with acceleratorslike GPUs for inproved performance and energy efficiency. However, these sys-tems suffer from poor performance portability, code tuned for one device mustbe retuned to achieve high performance on another. Image processing is increas-ing in importance , with applications ranging from seismology and medicine toPhotoshop. Based on our experience with medical image processing, we proposeImageCL, a high-level domain-specific language and source-to-source compiler,targeting heterogeneous hardware. ImageCL resembles OpenCL, but abstracts awayper- formance optimization details, allowing the programmer to focus onalgorithm development, rather than performance tuning. The latter is left toour source-to- source compiler and auto-tuner. From high-level ImageCL kernels,our source- to-source compiler can generate multiple OpenCL implementationswith different optimizations applied. We rely on auto-tuning rather thanmachine models or ex- pert programmer knowledge to determine whichoptimizations to apply, making our tuning procedure highly robust. Furthermore,we can generate high perform- ing implementations for different devices from asingle source code, thereby im- proving performance portability. We evaluateour approach on three image processing benchmarks, on different GPU and CPUdevices, and are able to outperform other state of the art solutions in severalcases, achieving speedups of up to 4.57x.
机译:现代计算机系统通常将多核CPU与诸如GPU之类的加速器结合使用,以提高性能和能源效率。但是,这些系统的性能可移植性差,必须重新调整针对一种设备调整的代码才能在另一设备上实现高性能。图像处理的重要性日益提高,其应用范围从地震学和医学到Photoshop。根据我们在医学图像处理方面的经验,我们提出了针对异类硬件的ImageCL,这是一种高级的领域特定语言和源到源编译器。 ImageCL类似于OpenCL,但是抽象了性能优化细节,使程序员可以专注于算法开发,而不是性能调整。后者留给了源到源编译器和自动调谐器。从高级ImageCL内核,我们的源代码到源代码编译器可以使用不同的优化来生成多个OpenCL实现。我们依靠自动调整而不是机器模型或专家编程知识来确定要应用的优化,从而使我们的调整过程非常可靠。此外,我们可以通过单个源代码为不同的设备生成高性能的实现,从而提高性能的可移植性。我们在三个图像处理基准上(在不同的GPU和CPU设备上)评估了我们的方法,并且能够在几种情况下胜过其他最新的解决方案,从而使速度提高了4.57倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号